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Abstract

In this paper we show how the highly restrictive design rubésthe recent sub-micro to nano-scale Integrated Circuit
technologies allow to use a limited number of pre-computgdiase charge distributions as a set of fundamental temasis
functions in an efficient integral equation based 3D capaci solver. Several examples verify that our solver careaetinal
accuracies of less than 2% using 30 30x fewer unknowns than standard piecewise constant basigidnacfor the same
accuracy, resulting in up to 25speedups.

I. INTRODUCTION

The state-of-the-art in efficient capacitance extracti@thds for integrated circuits involves 2D cross secti@naing, de-
termining wire adjacency, calculating 2D capacitance iakdet lookup approach, and then reconstructing quasi-3Baitmce.
Such approach is indeed fast, yet it is accurate only for 2lcsires. Full 3D structures (e.g. crossing wires in adjhogetal
layers) need the accuracy of electrostatic field solvers sisc[1]-[4]. The most efficient of such tools are based onisglv
integral equations using piece-wise constant basis fomettombined with standard collocation testing and iteegtchniques.
Such solvers are typically accelerated by fast matrixeseptoducts, which have a significant computational ovedhéat
scale almost linearly with the number of conductors. Hehey tare ideal for very large scale examples.

On the other hand, improving time and memory requirementtheyuse of higher order basis functions such as piece-wise
linear and quadratic bases is a common practice in almostuatierical communities when solving differential and imtdg
equations. Sometimes even more efficient solvers are @utdig employing or developing specialized basis functioith w
“built-in” known physical properties such as sinusoidakés for high frequency resonating antenna problems [5h-kiar
bases for diverge-free unknowns [6], conduction mode bfasddelmholtz current distributions inside conductors{4]1], and
edge and corner bases for surface charge density in capaeiéxtraction problems for microelectromechanical devid 2].

As in [12], this paper investigates the use of specializesisbfunctions to represent effectively the surface chaeyesity
distributions in integral equation based capacitanceaetitn solvers. However, the key idea in this paper is to @kphe
charge distributions properties due to the highly reswectiesign rules of the recent sub-micro to nano-scale iiated circuit
and packaging technologies, as highlighted in SectioAlliks we will demonstrate in the example session, in this aderthe
edge and corner bases introduced in [12] are not requiredhie\aed accuracies of about 5%, typically required by irdesd
circuit and packaging applications. On the other hand, ghalistributions and fringing fields induced by adjacentssiog
wires, when neglected, can easily generate unacceptaioles én the 20% range. Pre-computed surface charge distiitsu
shapes (defined in Section IlI-B) will be used in this work gaedalized basis functions (Section 11I-C) to represerthsu
induced charge distributions. A similar idea was introdlite[9] for proximity effect inducecturrents as opposed toharges
An additional difference in this work is the idea of assemglthe basis functions a priori and “on the fly” from just tweslza
building blocks. In this way analytical formulas and nurnsatitabulation of the Galerkin coefficients for our limitedmber
of template building blocks can effectively limit the setaperhead as shown in Section 1lI-D, obtaining fast simalatimes
and affordable memory requirements as demonstrated inxdmapes in Section 1V.

Il. BACKGROUND

A standard way to extract the capacitance matrix fer@nductor system embedded in a uniform medium with digtect
constant is to solve the integral equation )
p(r’)
— —dr' =(r 1
L g’ = @0 )

for the surface charge densipy given the electric potentiab(r). By expressing the charge densfiyr’) = Z;p;y;(r’) in a
linear combination oN basis functionsp; and by using the standard Galerkin testing method, (1) besom

Us. Sj 4TIE||I’—I”Hdr dr] Pi= / Wi(r)(r)dr (2)

where the integration in the brackets forms a system madrig,p; is a vector ofN unknowns corresponding to each basis
function.
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(a) The shape and slope of the induced charge density (semsion) of  (b) Basis function instantiation and assembly processnglesibasis is
the bottom wire are not affected by the width of the crossirigw constructed connecting one flat and two arch templates.

Fig. 1. Capturing charge density induced by crossing wires.

[1l. TEMPLATE INSTANTIATED BASIS FUNCTIONS
A. Observed Charge Density Properties for Typical IC Intencect

One key observation is that the surface charges accumgilatirtonductor corners and edges, as well as the chargesohduc
on a conductor surface due to a nearby conductor, in typie@hterconnect geometries are generally quite confined.carsk
key observation is that corner and edge charge accumusaditect the wire capacitances by no more than a few percedt, a
therefore can be safely ignored for typical IC target accigsaof about 5%, as the first example in Section IV will ver#&third
key observation is that the shape and slope of the chargéylerduced by a nearby wire is the same regardless of thehwidt
of the crossing wire as seen on Fig. 1(a). From the above wdtts®ms, one can conclude that in order to represent mosatif
all, charge distribution scenarios in IC/package applces, specialized basis functions can be easily instatiatpriori from
a very small number of pre-defined templates as shown faariestin Fig 1(b) for the two crossing wires, and as described i
more details for other cases in Section 1lI-C below. One cathér conclude that given the small number of templatedingl
blocks, the coefficients of the Galerkin system matrix in @), representing the interaction between different hasas be
either tabulated and retrieved very efficiently, or comgytartially analytically as shown in Section 11I-D, theredoavoiding
expensive setup costs.

B. Definition of Charge Density Building Block Templates

We first define two simple 1D shape templates as follows:
« “Flat curve” templateTe () = 1, a 1D constant function.
« “Arch shape” templateTa(-,a,b,h), a family of 1D decaying functions. Arch templates are chemdzed by the three
parameterga, b, h) defined in Fig. 1(b).
Using the two 1D template shapes above we define 2D buildiogkbl
« “Flat Building Block” : Bg(u,v) = Tg (u) - Te(V),
« “Arch Building Block” : Ba = (u,V) = Ta(£u) - T (V) or Ba = (U, V) = Ta(£V) - Tr (u), for decaying intu and=+tv directions,
respectively, ' '
where(u,v) are local coordinates on each conductor face. In our ofigoranulation we had defined other building blocks
such as corner and edge templates [12] shown in Fig. 3(b) tred blocks such a$a(4-u)- Ta(£v). In our experimentations
we have however made the critical observation that only tlae &d Arch building blocks defined above are essential and
sufficient to achieve the target 5% accuracies of typical 4facitance extraction.

C. Instantiation and Assembly of Charge Density Basis Fanstfrom Building Block Templates

Fig. 1(b) shows an example of the instantiation and asseptolgess for a basis function solely responsible to captoal |
charge accumulation induced on the bottom conductor by ebpesossing conductor. A left arch building block, a rigihtta
building block, and a flat building block are first instangidtto fit the appropriate dimensions of the neighboring wildse
three blocks are then connected together to constitisiagle basis function, hence they will contribute to a single unkno
in the final system (2). Each additional crossing wire wilhtribute a single extra basis function to the bottom conalyct
hence contributing a single extra unknown to the system.

Another typical example of such instantiation and asserpbbgess is illustrated in Fig 2(b) which shows one singléshbas
function constructed on the fly by the solver by instant@tamd connecting three arch building blocks and one flat imgjld
block in order to fit the wire dimensions shown in Fig. 2(a)eTbtal number of basis functions used to represent the eharg
density of all surfaces of the bottom conductor is 7, i.e. flaebasis covering completely each face of each conduchaes, p



(a) Wires’ geometry. (b) The single basis function representing the inducedgehdensity
is assembled using three arch building blocks and one flidibgi
block.

Fig. 2. Instantiation and assembly process for partiallgriajpping wires

the basis function shown in Fig. 2(b). One can notice howtaldil building blocks of the fornTa(£u) - Ta(£Vv) could have
been used to capture corner fringe. However as mentionetipheulimes the simple basis function as shown in Fig. 2(b) is
necessary and sufficient for the target 5% accuracy of ttablem.

A simple algorithm implementing the ideas illustrated ie thvo examples above has been developed (and cannot beadclud
because of space limitations) to instantiate and assenalsis functions from our two building blocks for any givenleotion
of wires in a Manhattan layout with rectangular wires.

D. Efficient System Matrix Assembly

In order to reduce the time required to calculate the Galeiriiegrals for each of the system entry in eq. (2), we adopt a
partially numerical - partially analytical scheme, sumized in Table below. In order to further increase efficiene/twincate
and use a piecewise linear approximation for the arch shape.

Building Block Interaction Type Integration Schemes

Flat with Flat 3D analytical and 1D numerical
Flat with Arch 3D analytical and 1D numerical
Arch with Arch (different directions) 2D analytical and 2D numerical
Arch with Arch (same direction) Summation &flat with Arch

IV. EXAMPLES

Figure 3(a) shows the parametric sweep of aspect ratio azal far a single conductor solved using only one single flat
basis function over each face, combined with the standaldri@a testing approach. This simple setup achieves leas th
3% relative error. Including additional basis functionpnesenting edge and corner singularities [12] as shown gn Hib)
achieves a significantly smaller relative error of $&. This example however demonstrates that for the 5% acgueagired
by integrated circuit designs, edge and corner basis fumgtio not need to be included.

In the Table below we summarize the performance of severainples where we used the basis functions described in
Section 1lI-C with a standard Galerkin testing, and we corapghem to piecewise constant (PWC) basis with collocation
testing in uniform discretization. In both methods, systeare solved by standard Gaussian elimination. All our exesnpave
been run in Matlab on a desktop computer with a Xeon 2.93GH4.CP

Example Partially overlapping wires Fig. 2(a) 7 by 7 buses B{a) Routing wires between modules Fig. 4(b)
Relative Error 1.6% 2.1% 1.7%

This work  PWC  Improvement This work PWC Improvement This kvor PWC Improvement
Unknown Number 17 572 33 966 4688 4.& 120 1754 14.&
Filling Time (sec) 0.03s 0.75s 25 14.1s 13.3s 0.94 0.35s 1.9s 5.4
Solving Time (sec) < 0.1ms 0.015s > 150x 0.05s 3.3s 604 <1ims 0.24s > 240x

Total Time (sec) 0.03s 0.76s 253 14.2s 16.6s 12 0.35s 2.2s 6.4
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Fig. 3. \rification for neglecting singularity basis fuiocts
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(a) 7 by 7 crossing bus example (b) Routing wires between modules

Fig. 4. Two larger examples

V. CONCLUSIONS

In this paper we have presented an integral equation bagetitance solver which instatiates on the fly a small number
of specialized basis functions to capture charge disiohstinduced by nearby conductors. In a medium size exaropie,
solver used a total of just 120 unknowns, obtaining a woaseaelative error less than 2% compared to the result éstréy
piecewise constant basis in a very fine discretization vetts tof thousands of unknowns. Furthermore, the piecewisstaat
basis method requires 1754 unknowns to produce the same 2¥iera coarser discretization. Hence, for the same 2%
accuracy, our algorithm requires approximately 24 féwer unknowns, resulting in an overalk6speedup.
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